Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria.

Identifieur interne : 000216 ( Main/Exploration ); précédent : 000215; suivant : 000217

Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria.

Auteurs : Zahra F. Islam [Australie] ; Paul R F. Cordero [Australie] ; Chris Greening [Australie]

Source :

RBID : pubmed:31824474

Abstract

Aerobic soil bacteria persist by scavenging molecular hydrogen (H2) from the atmosphere. This key process is the primary sink in the biogeochemical hydrogen cycle and supports the productivity of oligotrophic ecosystems. In Mycobacterium smegmatis, atmospheric H2 oxidation is catalyzed by two phylogenetically distinct [NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently unresolved how these enzymes transfer electrons derived from H2 oxidation into the aerobic respiratory chain. In this work, we used genetic approaches to confirm that two putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons, HucE and HhyE, are required for H2 consumption in M. smegmatis. Sequence analysis show that these proteins, while homologous, fall into distinct phylogenetic clades and have distinct metal-binding motifs. H2 oxidation was reduced when the genes encoding these proteins were deleted individually and was eliminated when they were deleted in combination. In turn, the growth yield and long-term survival of these deletion strains was modestly but significantly reduced compared to the parent strain. In both biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize that these proteins mediate electron transfer between the catalytic subunits of the hydrogenases and the menaquinone pool of the M. smegmatis respiratory chain; however, other roles (e.g., in maturation) are also plausible and further work is required to resolve their role. The conserved nature of these proteins within most Hhy- or Huc-encoding organisms suggests that these proteins are important determinants of atmospheric H2 oxidation.

DOI: 10.3389/fmicb.2019.02749
PubMed: 31824474
PubMed Central: PMC6883350


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria.</title>
<author>
<name sortKey="Islam, Zahra F" sort="Islam, Zahra F" uniqKey="Islam Z" first="Zahra F" last="Islam">Zahra F. Islam</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cordero, Paul R F" sort="Cordero, Paul R F" uniqKey="Cordero P" first="Paul R F" last="Cordero">Paul R F. Cordero</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Greening, Chris" sort="Greening, Chris" uniqKey="Greening C" first="Chris" last="Greening">Chris Greening</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31824474</idno>
<idno type="pmid">31824474</idno>
<idno type="doi">10.3389/fmicb.2019.02749</idno>
<idno type="pmc">PMC6883350</idno>
<idno type="wicri:Area/Main/Corpus">000176</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000176</idno>
<idno type="wicri:Area/Main/Curation">000176</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000176</idno>
<idno type="wicri:Area/Main/Exploration">000176</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria.</title>
<author>
<name sortKey="Islam, Zahra F" sort="Islam, Zahra F" uniqKey="Islam Z" first="Zahra F" last="Islam">Zahra F. Islam</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cordero, Paul R F" sort="Cordero, Paul R F" uniqKey="Cordero P" first="Paul R F" last="Cordero">Paul R F. Cordero</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Greening, Chris" sort="Greening, Chris" uniqKey="Greening C" first="Chris" last="Greening">Chris Greening</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aerobic soil bacteria persist by scavenging molecular hydrogen (H
<sub>2</sub>
) from the atmosphere. This key process is the primary sink in the biogeochemical hydrogen cycle and supports the productivity of oligotrophic ecosystems. In
<i>Mycobacterium smegmatis</i>
, atmospheric H
<sub>2</sub>
oxidation is catalyzed by two phylogenetically distinct [NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently unresolved how these enzymes transfer electrons derived from H
<sub>2</sub>
oxidation into the aerobic respiratory chain. In this work, we used genetic approaches to confirm that two putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons, HucE and HhyE, are required for H
<sub>2</sub>
consumption in
<i>M. smegmatis</i>
. Sequence analysis show that these proteins, while homologous, fall into distinct phylogenetic clades and have distinct metal-binding motifs. H
<sub>2</sub>
oxidation was reduced when the genes encoding these proteins were deleted individually and was eliminated when they were deleted in combination. In turn, the growth yield and long-term survival of these deletion strains was modestly but significantly reduced compared to the parent strain. In both biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize that these proteins mediate electron transfer between the catalytic subunits of the hydrogenases and the menaquinone pool of the
<i>M. smegmatis</i>
respiratory chain; however, other roles (e.g., in maturation) are also plausible and further work is required to resolve their role. The conserved nature of these proteins within most Hhy- or Huc-encoding organisms suggests that these proteins are important determinants of atmospheric H
<sub>2</sub>
oxidation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31824474</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria.</ArticleTitle>
<Pagination>
<MedlinePgn>2749</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2019.02749</ELocationID>
<Abstract>
<AbstractText>Aerobic soil bacteria persist by scavenging molecular hydrogen (H
<sub>2</sub>
) from the atmosphere. This key process is the primary sink in the biogeochemical hydrogen cycle and supports the productivity of oligotrophic ecosystems. In
<i>Mycobacterium smegmatis</i>
, atmospheric H
<sub>2</sub>
oxidation is catalyzed by two phylogenetically distinct [NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently unresolved how these enzymes transfer electrons derived from H
<sub>2</sub>
oxidation into the aerobic respiratory chain. In this work, we used genetic approaches to confirm that two putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons, HucE and HhyE, are required for H
<sub>2</sub>
consumption in
<i>M. smegmatis</i>
. Sequence analysis show that these proteins, while homologous, fall into distinct phylogenetic clades and have distinct metal-binding motifs. H
<sub>2</sub>
oxidation was reduced when the genes encoding these proteins were deleted individually and was eliminated when they were deleted in combination. In turn, the growth yield and long-term survival of these deletion strains was modestly but significantly reduced compared to the parent strain. In both biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize that these proteins mediate electron transfer between the catalytic subunits of the hydrogenases and the menaquinone pool of the
<i>M. smegmatis</i>
respiratory chain; however, other roles (e.g., in maturation) are also plausible and further work is required to resolve their role. The conserved nature of these proteins within most Hhy- or Huc-encoding organisms suggests that these proteins are important determinants of atmospheric H
<sub>2</sub>
oxidation.</AbstractText>
<CopyrightInformation>Copyright © 2019 Islam, Cordero and Greening.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Islam</LastName>
<ForeName>Zahra F</ForeName>
<Initials>ZF</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cordero</LastName>
<ForeName>Paul R F</ForeName>
<Initials>PRF</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Greening</LastName>
<ForeName>Chris</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Mycobacterium</Keyword>
<Keyword MajorTopicYN="N">atmospheric H2</Keyword>
<Keyword MajorTopicYN="N">hydrogen cycle</Keyword>
<Keyword MajorTopicYN="N">hydrogenase</Keyword>
<Keyword MajorTopicYN="N">iron-sulfur protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31824474</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2019.02749</ArticleId>
<ArticleId IdType="pmc">PMC6883350</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol Rep. 2014 Jun;6(3):226-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24983527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2016 Feb;5(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26541261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):599-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2006 Nov;152(Pt 11):3453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2017 Nov;74(4):771-775</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28623391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Oct;2(10):1066-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18548118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Mar;66(1):1-20, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Dec 17;5:698</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25566214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Jul 06;12:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22769583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2016 Dec;66(12):5328-5335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27692038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2014 Apr;18:30-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24607643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Apr;58(4):1220-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1599242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2014 Jan;16(1):318-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24536093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jan 07;5(1):e8614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20062806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2019 Mar 6;85(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30658976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26240343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2013 Jan 8;21(1):184-190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23260654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Apr;146(1):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6783615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Nov;15(11):3040-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2008 Nov;13(8):1301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18719951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Jun 6;351(6326):456-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1904554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Sep;18(8):2495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26636257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2019 Dec 13;294(50):18980-18991</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31624148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Mar;10(3):761-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26405831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2019 Jul;13(7):1801-1813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30872805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Nov;11(11):2599-2610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28777381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Feb;81(4):1190-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25501483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25049411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Sep;79(17):5137-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2001 Feb;33(1):9-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11460929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4257-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Dec 21;552(7685):400-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29211716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2019 Nov;13(11):2868-2881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31358912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Oct;150(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2019 Jun;4(6):1014-1023</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30858573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Mar;12(3):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20050876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 27;6:34212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27670643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2007 Feb;12(2):212-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1990 Nov;4(11):1911-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2082148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Apr;11(4):945-958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27935590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2009 Mar 1;407(6):1809-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19155054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Dec 20;50(50):10836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22097922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Aug 29;345(6200):1052-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25170152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 24;9(7):e103034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25058581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 14;289(11):7982-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24448806</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Islam, Zahra F" sort="Islam, Zahra F" uniqKey="Islam Z" first="Zahra F" last="Islam">Zahra F. Islam</name>
</noRegion>
<name sortKey="Cordero, Paul R F" sort="Cordero, Paul R F" uniqKey="Cordero P" first="Paul R F" last="Cordero">Paul R F. Cordero</name>
<name sortKey="Greening, Chris" sort="Greening, Chris" uniqKey="Greening C" first="Chris" last="Greening">Chris Greening</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000216 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000216 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31824474
   |texte=   Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31824474" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020